Herbicide Injury

Symptomology

Wesley Everman Extension Weed Specialist

Herbicide Injury What are the causes?

Causes of Herbicide Injury

- In some cases, some injury to target crop is expected.
- Injury to target crop may be enhanced by environmental conditions.
- In some cases, there is no good explanation for injury to target crop.
- Injury often caused by applicator error.

Applicator Errors Leading to Herbicide Injury

Target crop	Non-target areas	
Improper application rate	Carryover	
Improper application method	Drift	
Improper application timing	Weather	
Pesticide interactions		
Equipment contamination		
Wrong chemical		

Investigating

Herbicide Injury Situations

What to do, what to look for

1. Gather as much information as possible.

Information

Crop and pesticide use history Fertility program, how applied Any history of similar problems

Information

- When treated
- Crop and weed stage at treatment
- Who made application, who mixed, go through whole procedure
- Check out the application equipment
- Environmental conditions at treatment
- When injury observed
- What did injury initially look like
- Who saw the injury

Information

Acres treated, amount used, tank size Equipment used Nozzles, pressure, volume Other uses of equipment Clean out procedure

- 1. Gather as much information as possible.
- 2. Thoroughly examine plants.

- 1. Gather as much information as possible.
- 2. Thoroughly examine plants.
- 3. Look for patterns

sprayer patterns, row patterns, gradients in injury, soil types, topography, etc

- 1. Gather as much information as possible.
- 2. Thoroughly examine plants.
- 3. Look for patterns.
- 4. Look at other vegetation.

- 1. Gather as much information as possible.
- 2. Thoroughly examine plants.
- 3. Look for patterns.
- 4. Look at other vegetation.
- 5. Eliminate as many possibilities as you can.
- 6. Chemical analysis may be helpful.

What is "Mode of Action"?

The biochemical mechanism by which a herbicide causes growth to cease in target plants.

Example: inhibition of ALS (acetolactate synthase), an enzyme involved in synthesis of branched-chain amino acids.

MOA	
Inhibition of ACCase	
Inhibition of ALS	
Inhibition of PS II	
Inhibition of PS II	
Inhibition of PS II	
PS I electron diversion	
Inhibition of PPO	
Bleaching: inhibition of carotenoid biosynthesis at PDS	
Bleaching: inhibition of HPPD	
Bleaching: inhibition of carotenoid biosynthesis, unknown target	
Inhibition of EPSPS	
Inhibition of glutamine synthetase	
Microtubule assembly inhibition	
Inhibition of long-chain fatty acid synthesis	
Inhibition of cell wall synthesis	
Inhibition of lipid synthesis; not ACCase inhibition	
Synthetic auxins	
Inhibition of auxin transport	
Unknown	

Purpose of MOA Classification Systems

- Rotating MOA's and using mixtures of MOA's is a key component in herbicide resistance management strategies
- A simple classification system helps the layperson

Two Classification Systems For Herbicide MOA

HRAC (Herbicide Resistance Action Committee)
Use a letter system

WSSA (Weed Science Society of America)
Use a number system

HRAC Code	WSSA Code	MOA
А	1	Inhibition of ACCase
В	2	Inhibition of ALS
C1	5	Inhibition of PS II
C2	7	Inhibition of PS II
C3	6	Inhibition of PS II
D	22	PS I electron diversion
Е	14	Inhibition of PPO
F1	12	Bleaching: inhibition of carotenoid biosynthesis at PDS
F2	27	Bleaching: inhibition of HPPD
F3	13	Bleaching: inhibition of carotenoid biosynthesis, unknown target
G	9	Inhibition of EPSPS
Н	10	Inhibition of glutamine synthetase
K1	3	Microtubule assembly inhibition
К3	15	Inhibition of long-chain fatty acid synthesis
L	20 and 21	Inhibition of cell wall synthesis
Ν	8	Inhibition of lipid synthesis; not ACCase inhibition
0	4	Synthetic auxins
Р	19	Inhibition of auxin transport
Z	17	Unknown

Purpose of MOA Classification Systems

- Rotating MOA's and using mixtures of MOA's is a key component in herbicide resistance management strategies
- A simple classification system helps the layperson
- Classification code required on labels in some countries; still optional in US
- Labels of newer products in US carry WSSA code

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors
 - a. Root inhibitorsb. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

Growth Regulators

Examples (common & trade names)

- Phenoxy-carboxylic acids
- **Benzoic** acids

Family

Pyridines

Quinoline carboxylic acids 2,4-D, 2,4-DB, MCPA, MCPP (numerous brands of each)

dicamba (Banvel, Clarity, Vanquish)

triclopyr (Garlon) clopyralid (Stinger) picloram (Tordon)

quinclorac (Facet, Paramount)

Growth Regulators

- Exact mode of action unknown
- They have auxin-like properties
- Mode of action involves interference with nucleic acid metabolism and disruption of normal transport systems through induced massive cell proliferation
- Distorted growth

2,4-D Postemergence

2,4-D

Epinastic Response to 2,4-D and 2,4-DB

Soybean leaf distortion by 2,4-D

A. York, NCSU

Purdue Univ.

Cotton leaf distortion by 2,4-D

2,4-D sprayer contamination on tobacco

Malformed wheat heads

2,4-D

Dicamba

Leaf cupping by Dicamba

"Cobra-hood" caused by Dicamba or Picloram

Dicamba drift

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors
 - a. Root inhibitorsb. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

ALS Inhibitors

Examples (common & trade names) Family imazaquin (Scepter) Imidazolinones imazethapyr (Pursuit) chlorimuron (Classic) Sulfonylureas nicosulfuron (Accent) Triazolopyrimidines cloransulam (FirstRate) flumetsulam (Python) Pyrimidinyl(thio) pyrithiobac (Staple)

benzoates
ALS Inhibitors

- Inhibit the enzyme acetolactate synthase (ALS)
- ALS is catalyst in first step of biosynthesis of essential amino acids valine, leucine, and isoleucine
- Chlorosis of meristematic tissue, followed by slow general chlorosis and necrosis. Shortened internodes. Sometimes leaf distortion.

ALS Inhibitors postemergence

Nicosulfuon S.Cuhepper, UGA

Inesettapyr+ inesepy; A. York, NCSU

Primis alfanon + prosalfanon, S. Calpepper, UGA

Pyrithio bag, A. 25 rd, NC SU

Primisulfion + prosulfinon, A. Wah, MCSU

ALS Inhibitors

Stunting by trifloxysulfuron applied postemergence

Leaf distortion by chlorimuron

Prosulfuron + Primisulfuron

Chlorsulfuron + metsulfuron

carryover

Imazaquin carryover

Corn roots imazaquin carryover

Nicosulfuron

Postemergence

Leaf crinkling by

nicosulfuron

Univ. Wisconsin

Ear pinching by nicosulfuron

ALS Inhibitors Postemergence

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors
 - a. Root inhibitorsb. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

EPSPS Inhibitors

Family	Examples (common & trade names)
Glycines	glyphosate (numerous
(amino acid	trade names)
derivatives)	

EPSPS Inhibitors (glyphosate)

- Inhibit shikimic acid pathway by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thereby limiting synthesis and regulation of aromatic amino acids.
- Also inhibit synthesis of 5-aminolevulinic acid (ALA), thereby blocking porphyrin ring synthesis and, subsequently, all compounds normally containing porphyrin rings, such as chlorophyll, cytochromes, and peroxidases.
- Chlorosis appearing first in growing points and immature leaves.

Glyphosate

Glyphosate applied to non-RR corn

Glyphosate on non-RR corn; sprayer contamination

Glyphosate drift on non-RR corn

Glyphosate on non-RR corn; sprayer contamination

Glyphosate drift

Glyphosate drift

Double rate of glyphosate on RR soybean

Glyphosate sprayer contamination

Glyphosate on RR cotton

Glyphosate on RR cotton

Glyphosate on RR cotton

Glyphosate overtop RR cotton after 4-leaf stage

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors a. Root inhibitors
 - b. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

Lipid Synthesis Inhibitors (ACCase inhibitors)

Family	Examples (common & trade names)
Aryloxyphenoxy- propionates	diclofop (Hoelon) fluazifop (FusiladeDX) quizalofop (AssureII)
Cyclohexanediones	clethodim (Select) sethoxydim (Poast)

ACCase Inhibitors

- Inhibit biosynthesis of lipids by inhibiting the enzyme acetyl-CoA carboxylase (ACCase)
- Affect only grasses; do not affect broadleaf plants
- Leaf chlorosis, eventually necrosis. Older leaves often turn purple or red before becoming necrotic.
- Leaf sheaths become brown and mushy at and just above their point of attachment to the node.
- Work slowly.

ACCase Inhibitors

Sethoxydim drift

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors a. Root inhibitors
 - b. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

Root Inhibitors

Family	Examples	
	(common & trade names)	
Dinitroanilines	benefin (Balan)	
	pendimethalin (Prowl)	
	trifluralin (Treflan)	

Pyridines

dithiopyr (Dimension)
Dinitroanilines

- Microtubule assembly inhibition
- Interfere with normal mitosis (cell division)
- Swollen root tips

Root pruning with DNA's

Pundua Univ.

Root pruning with DNA's

Stunting by DNA herbicide

Shoot Inhibitors

	Examples	
Family	(common & trade names)	
Chloroacetamides	alachlor (Lasso)	
	acetochlor (Harness, Surpass)	
	metolachlor (Dual)	

Thiocarbamates

EPTC (Eptam, Eradicane) butylate (Sutan+)

- Inhibit cell division
- Mechanism of action thought to be inhibition of very long-chain fatty acids
- "Drawstring" effect on broadleaves
- Twisted shoots, leaves that do not unfurl normally in grasses

Chloroacetamides Leafing out underground

Chloroacetamides preemergence

Thiocarbamates

- Exact mechanism of action not understood
- Inhibit lipid synthesis
- Twisted, distorted shoots in grasses
- Leaf seal in broadleaf plants

Thiocarbamates

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors a. Root inhibitors
 - b. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

Photosynthesis Inhibitors (mobile)

Family	Examples (common & trade names)
Triazines	atrazine (AAtrex)
	simazine (Princep)
Triazinones	metribuzin (Sencor)
Ureas	diuron (Direx, Karmex)
	linuron (Linex, Lorox)

Photosynthesis Inhibitors

- Block electron transport in photosystem II in chloroplast thylakoid membranes.
- Process stops CO₂ fixation and production of ATP and NADPH₂
- Death due to formation of triplet state chlorophyll and singlet oxygen, which causes lipid peroxidation.
- Lipids and proteins are oxidized, resulting in loss of chlorophyll and carotenoids and in leaky membranes which allows cells and cell organelles to disintegrate.

Atrazine preemergence on corn

Metribuzin

preemergence

Metribuzin preemergence

Fluometuron carryover

Triazines and Ureas

Triazines and Ureas postemergence

Fluometuron

S. Culpepper, UGA

Photosynthesis Inhibitors (non-mobile)

	Examples	
Family	(common & trade names)	
Benzothiadiazoles	bentazon (Basagran)	
Nitriles	bromoxynil (Buctril)	
Phenyl-pyridazines	pyridate (Tough)	

Bentazon

S. Culpepper, UGA

Bromoxynil

S. Culpepper, UGA

Bromoxynil

Bromoxynil

Pyridate postemergence, cotton

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors
 - a. Root inhibitorsb. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

Cell Membrane Disruptors (protox inhibitors)

- Protox (protoporphyrinogen oxidase) inhibition.
- Leads ultimately to oxidation of lipids and proteins, resulting in loss of chlorophyll and carotenoids and in leaky membranes which allow cells and cell organelles to disintegrate rapidly.
- Rapid foliar burn

Protox Inhibitors

	Examples
Family	(common & trade names)
Diphenylethers	acifluorfen (Blazer) fomesafen (Reflex) lactofen (Cobra)
N-phenylphthalimides	flumiclorac-penty (Resource) flumioxazin (Valor)
Triazolinones	carfentrazone (Aim) sulfentrazone (Authority, Spartan)

Protox Inhibitors

Protox inhibitors

Fomesafen, A. York, NCSU

Lactofen, A. York, NCSU

Flumiclorac, A. York, NCSU

Acifluorfen, A. York, NCSU

Protox inhibitors Flumioxazin preemergence

A. York, NCSU
Cell Membrane Disruptors (photosystem I inhibitors)

- Paraquat
- Diverts electrons from photosystem I to form free radicals which rapidly destroy cell membranes.
- Rapid wilting and desiccation of foliage.

Paraquat

Drift

Direct hit

Paraquat

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors
 - a. Root inhibitorsb. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

Pigment Inhibitors (bleachers)

	Examples
Family	(common & trade names)
Isoxazole	isoxaflutole (Balance Pro)
Isoxazolidinone	clomazone (Command)
Pyridazinone	norflurazon (Solicam, Zorial)
Triketone	mesotrione (Callisto)

Pigment Inhibitors

- Disrupt carotenoid (yellow pigments) synthesis
- w/o carotenoid pigments, chlorophyll pigments photodegrade
- Result is bleached plants

Norflurazon carryover on cabbage

Norflurazon

Clomazone

Clomazone

Clomazone drift

Mesotrione

Mesotrione

Herbicide Mode of Action

- 1. Growth regulators
- 2. Amino acid synthesis inhibitors
 - a. ALS inhibitorsb. EPSPS inhibitors
- 3. Lipid synthesis inhibitors
- 4. Seedling growth inhibitors
 - a. Root inhibitorsb. Shoot inhibitors
- 5. Photosynthesis inhibitors
 - a. Mobile
 - b. Immobile
- 6. Cell membrane disrupters
- 7. Pigment inhibitors
- 8. Ammonia assimilation inhibitors

Ammonia Assimilation Inhibitors

Examples (common & trade names)

Phosphinic acids

Family

glufosinate (Liberty, Finale, Ignite)

Ammonia Assimilation Inhibitors

- Inhibit glutamine synthetase, the enzyme that converts glutamate plus ammonia to glutamine
- Causes buildup of ammonia in plants, and destroys cells.
- Necrosis in 3 to 4 days.

Glufosinate

Glufosinate

